
Teradici Software Development Kit for Mac

The PCoIP Client Software Development Kit (SDK) for Mac is a set of libraries and binaries that

enables developers to build custom PCoIP clients. The SDK is provided as part of Teradici Cloud

Access Software and the resulting client can connect to Cloud Access Software Standard Edition

and Graphics Edition through the Cloud Access and Cloud Access Plus plans. The SDK includes

the following components:

• Code Examples

• Programming Guide

• Session Client Source Code

• Session Client Binary Executable

• Session Client Libraries and API Headers

• Session Client API Documentation

• Broker Client Example Code

• Broker Client Libraries and API Headers

• PCoIP Core Libraries and API Headers

• PCoIP Core Binary

Supported Platforms

The PCoIP Client SDK can be used on the following Mac operating systems:

• macOS 10.14 Mojave

• macOS 10.13 High Sierra

What Can You Build With the PCoIP Client SDK?

The PCoIP Client SDK provides developers the ability to embed a PCoIP session into any program

or solution, or create a standalone client with a completely custom user interface and workflow.

With complete control over how a PCoIP client is built, you can create clients that incorporate

Teradici Software Development Kit for Mac

© 2020 Teradici 1

customizations in both pre-session and in-session phases of a PCoIP connection. For example,

the following customizations are all typical use cases:

Pre-Session Customizations

• Customizing the client user interface to create a branded, end-to-end solution using company

assets such as:

• Corporate Logos

• Slogans, trademarks or other text

• Corporate colors and iconography

• Developing customized authentication workflows, either directly or using a broker.

• Automatically connecting users to specific desktops or applications, based on an identified

user type or task.

• Embedding a remote workload into an application.

In-Session Customizations

• Client branding, including:

• Menu item labels

• Window titles

• Application icons

• Company logos

• Automatic bridging of USB devices.

• In-session menu bar visibility.

• Disabling hot keys.

• Client display size in windowed and fullscreen mode.

• Configuring resolutions.

• Securely using local and bridged USB devices.

Complete control of the in-session user experience is possible using the PCoIP Core API.

What Can You Build With the PCoIP Client SDK?

© 2020 Teradici 2

Who Should Read This Guide?

This guide provides information for software developers and systems integrators with an

understanding of SDK integrations and virtualization systems who are developing customized

PCoIP clients. Readers should already understand the Teradici Cloud Access Software and how it

is used in virtual environments, in both brokered and nonbrokered sessions. This guide will break

down how to use the session client executable and how to use the broker client API, session client

API and core API. This document is not intended for users who are unfamiliar with SDK

integrations, or for Teradici Cloud Access Software users who do not require a customized PCoIP

client. In this guide, you will learn about:

• PCoIP Session Components and Considerations

• Customizing the PCoIP Session

• Setting up a PCoIP Agent Test Environment

• Setting up a Development Environment for Windows

• Troubleshooting Issues related to Setting up, Developing and Building the SDK

Session API and Core API Development

If you are looking for development specific instructions and information around using the Session

API, see Session API Development.

If you are looking for development specific instructions and information around using the Core

Libraries and API, see Core API Development.

Understanding terms and conventions in Teradici guides

For more information on the industry specific terms, abbreviations, text conventions, and graphic symbols used in this

guide, see Using Teradici Product and Component Guides and the Teradici Glossary.

Who Should Read This Guide?

© 2020 Teradici 3

http://www.teradici.com/web-help/product_education/conventions/
https://www.teradici.com/web-help/Glossary/default.htm

What's New in This Release?

This release introduces the following features and enhancements to the PCoIP Client SDK for

macOS:

Enhanced A/V Sync Enabled by Default

Enhanced A/V sync can now be enabled in the PCoIP Client menu as outlined here. Previously,

additional configurations were required.

Security and Stability Updates

Increased security and stability updates and enhancements around the PCoIP Client.

What's New in This Release?

© 2020 Teradici 4

System Requirements

The following table outlines the system requirements for the PCoIP Client SDK for Mac:

System Version Required

PCoIP Client SDK Operating Systems
• macOS Catalina (10.15)*

• macOS Mojave (10.14)

Compatible PCoIP agents All PCoIP agents and versions

Compatible Teradici Remote Workstation Cards TERA22x0 with firmware 2017.05 or higher

Compatible PCoIP Host Software
• Remote Workstation Card Software for Windows: 20.01

• Remote Workstation Card Software for Linux: 20.01

*macOS Catalina Support

There are some steps that need to be carried out to enable macOS Catalina support and functionality is properly

configured on the PCoIP Client SDK for macOS 19.11:

• You need to sign the libraries and notarize your custom client with Apple before the application can run on macOS

Catalina.

• You need to sign all libraries, as well as the SessionClient executable and package and notarize these before

your custom application, using the SessionClient executable, can run on macOS Catalina.

Remote Workstation Platforms

PCoIP Host Software must be installed on Remote Workstation machines to enable keyboard and mouse

functionality.

System Requirements

© 2020 Teradici 5

Notarizing Applications to run on macOS Catalina

The PCoIP Client SDK for macOS 19.11 has been compiled with OSX SDK 10.13 and 10.14 which

meets the Apple notarization requirements. For information on notarizing applications built with

the SDK, see https://developer.apple.com/documentation/security/

notarizing_your_app_before_distribution.

Hardware System Requirements

For different display configurations Teradici recommends certain processor and RAM

combinations:

• For up to dual 1920 x 1080 display configuration Teradici recommends 1.6 GHz dual core

processor or higher with at least 4 GB RAM.

• For up to dual 4K/UHD Teradici recommends a 3.0 Ghz quad core processor or higher with at

least 2 x 4 GB RAM.

Notarizing Applications to run on macOS Catalina

© 2020 Teradici 6

https://developer.apple.com/documentation/security/notarizing_your_app_before_distribution
https://developer.apple.com/documentation/security/notarizing_your_app_before_distribution

Wacom Tablet Support

The Software Client for Mac supports Wacom tablets in a bridged configuration, where peripheral

data is sent to the desktop for processing.

Remote USB Device Support

If a pointer type USB device, for example wacom tablets, mouse, or stylus device, is remoted, you

need to grant PCoIPClient.app computer control to enable it to rendor and move the cursor. You

can enable this through the Preferences>Security & Privacy>Privacy>Accessibility location on

your system settings.

Bridged Wacom Tablets

Bridged Wacom tablets are supported only in low-latency environments. Tablets in network

environments with greater than 25ms latency will show reduced responsiveness and are not

recommended.

The following Wacom tablet models have been tested and are supported on a PCoIP Software

Client for Mac.

PCoIP client support for bridged Wacom tablets and the Software Client for Mac

PCoIP

Standard

Agent for

Linux

PCoIP

Graphics

Agent for

Linux

PCoIP

Standard

Agent for

Windows

PCoIP

Graphics

Agent for

Windows

PCoIP Remote

Workstation

Card

Intuos Pro Small

PTH-460

 —

Intuos Pro Medium

PTH-660

 —

Wacom Tablet Support

© 2020 Teradici 7

Known Issues with Wacom Tablets and Functionality

Whilst testing and developing the compatibility of Teradici Cloud Access Software with different

Wacom tablets, certain performance issues arise. The following is a list of the current known

issues with certain Wacom tablets:

• The touch feature does not work on any supported device for both bridged and locally

terminated devices across all platforms.

• ExpressKey Remote does not work on the Wacom Cintiq Pro 32 (DTH-3220). You should still

remote to this device when remoting to the Wacom tablet.

PCoIP

Standard

Agent for

Linux

PCoIP

Graphics

Agent for

Linux

PCoIP

Standard

Agent for

Windows

PCoIP

Graphics

Agent for

Windows

PCoIP Remote

Workstation

Card

Intuos Pro Large

PTH-860

 —

Cintiq 22HD

DTK-2200

 —

Cintiq Pro 24

DTK-2420

 —

Cintiq 22HDT -

 Pen & Touch

DTH-2200

 —

Cintiq Pro 24 -

 Pen & Touch

DTH-2420

 —

Cintiq Pro 32 -

 Pen & Touch

DTH3220

 —

Known Issues with Wacom Tablets and Functionality

© 2020 Teradici 8

• There are cursor limitations when working with the Wacom Cintiq 22HD (DTK-2200) and

Wacom Cintiq Pro 24 (DTK-2420) for both bridged and locally terminated devices across all

platforms.

• There is a issue with the control buttons on the Wacom Cintiq Pro 32 (DTH-3220) device. The

buttons do not function on locally terminated devices across all platforms.

USB Device Pressure Sensitivity

The PCoIP Software Client for macOS may encounter issues with Wacom pressure sensitivity.

This is as a USB handling restriction on macOS Catalina. It occurs when you want to load the USB

Kernel Extension at session start up. For information on how to address this issue, see here.

Cintiq 22HD Wacom Driver

The Cintiq 22HD may require the Wacom driver to be installed on both the PCoIP Agent and PCoIP Client. The driver

version on the PCoIP Agent must be 6.3.32-4. The driver on the PCoIP Client must be the latest version available.

USB Device Pressure Sensitivity

© 2020 Teradici 9

About PCoIP Sessions

Establishing a PCoIP session involves a number of key components, including system actors,

PCoIP session phases, and connection brokers as discussed next.

System Actors

There are at least three components that work together to create a PCoIP session:

• PCoIP client: The hardware or software device, local to the user, which requests and drives the

PCoIP session by negotiating with PCoIP brokers and PCoIP agents.

• PCoIP Broker: Brokers maintain lists of active users, their authentication information, and the

host machines they can connect to. Except for systems using direct connections, all PCoIP

sessions are negotiated via third-party brokers.

• PCoIP agent: The Teradici extension installed on the host machine. The PCoIP agent is the

single point of access for PCoIP clients, and handles all video, audio, and USB exchanges

between the client and desktop.

The following diagrams show the actors outlined above in a brokered and direct connection:

Terminology: Hosts and Desktops

Host refers to a Windows, or Linux machine, either virual or physical, which has a PCoIP agent installed and can serve

a remote desktop to a PCoIP Client. Desktop refers to an entity which is delivered to the client as a remote workload.

This is typically a full Windows or Linux desktop, but it can also be configured to present a single application.

About PCoIP Sessions

© 2020 Teradici 10

Direct Connection

Brokered Connection

System Actors

© 2020 Teradici 11

PCoIP Session Phases

There are two phases in a PCoIP session:

• Pre-session In the pre-session phase, a PCoIP client communicates with a PCoIP broker to

authenticate a user and obtain a list of desktops for which that user is authorized. The client

then presents this list to the user for selection, and asks the broker to establish a PCoIP

session with the selected desktop.

• Session In the session phase, the PCoIP session has been successfully launched and the

client is connected to the remote desktop. Once the PCoIP connection is established, a

session client is invoked by the pre-session client. The session client is primarily a conduit

between the host and the client applications. For a list of customizable in-session properties,

with examples, see Customizing the PCoIP Session.

PCoIP Session Phases

© 2020 Teradici 12

http://www.teradici.com/web-help/pcoip_client_sdk/mac/3.7.0/customizable_session_features_mac/

About Brokered and Non-Brokered Connections

PCoIP-compatible brokers are resource managers that authenticate users and dynamically assign

authorized host agents to PCoIP clients based on the identity of the user. PCoIP clients can

connect to PCoIP agents using a PCoIP-compatible broker, called a brokered connection, or

directly, called a non-brokered or direct connection. The broker client library included in the Client

SDK is designed to communicate with PCoIP-compatible brokers using the PCoIP Broker Protocol.

In direct connections, when no broker is used, the PCoIP agent acts as its own broker. The client

makes the same calls to the broker client library in either case.

Example pre-session Client

The included pre-session client, , uses the included broker client library to execute

transactions using the PCoIP Broker Protocol. This example client demonstrates how to establish both brokered and

non-brokered connections

broker_client_example

About Brokered and Non-Brokered Connections

© 2020 Teradici 13

Connecting to a USB Device

Remote hosts using the PCoIP Standard Agent or the PCoIP Graphics Agent can use USB devices

that are attached to the client. When you connect a local USB device to your remote host it will be

disabled on the client machine.

USB device connections do not persist across multiple PCoIP sessions. You must connect your

USB device each time you connect.

To connect to a USB device:

1. Attach the USB device you want to connect.

2. Select Connection > USB Devices from the PCoIP Software Client menu.

A list of USB devices connected to your client machine appears. Integrated USB devices, such

as built-in cameras on laptops, will appear in this list along with devices you have plugged in

yourself.

Some devices will identify themselves only as USB Device.

PCoIP Agent needs to be configured to enable USB redirection

The USB menu will only show up if the PCoIP Agent has been configured to enable USB redirection and a USB device

has been detected by the PCoIP Client.

One-time PCoIP Client login

The first time you connect after a Mac installation, you must enter a Mac administrator user name and password. You

only need to do this when you install a new client.

Connecting to a USB Device

© 2020 Teradici 14

3. Click Connect beside the USB device you want to use.

To disconnect a USB device:

1. Select Connection > USB Devices from the PCoIP Software Client menu.

Connecting to Human Interface Devices

Most Human Interface Devices (HIDs), such as keyboards and mice, are automatically handled by the PCoIP Software

Client and don't appear on in this list even if they use a USB connection.

If you need to connect a Human Interface Device that can't be locally processed, like a 3D mouse or a Wacom tablet,

enable the Show Human Interface Devices checkbox to reveal the device in the USB device list and click its Connect

button.

You may also have to complete additional configuration steps or install drivers on the host machine.

To disconnect a USB device:

© 2020 Teradici 15

2. Click Disconnect beside the USB device you want to disconnect.

To disconnect a USB device:

© 2020 Teradici 16

Disconnecting a Session

To disconnect a PCoIP session from either client, select the Connection > Disconnect menu

option.

Quitting the application will also disconnect the current session.

Session Reconnection

If a network interruption is detected, the PCoIP session enters a reconnecting phase. In this phase

the client will show you the network reconnecting dialog which indicates that there is a network

issue and that the client is trying to reconnect and re-establish the PCoIP session. You can click

disconnect to cancel the attempted reconnect and disconnect the session completely. If the

reconnection is successful, the notification dialog will disappear and the session will be restored, if

not, the session will be disconnected completely.

Quickly Disconnect from a session

To quickly disconnect from a session, press CTRL+Option+F12

Disconnecting a Session

© 2020 Teradici 17

Changing the PCoIP Software Client Window Mode

You can use the PCoIP Software Client in full-screen or windowed mode. Full-screen mode is

recommended in most cases.

Activating Full Screen Modes

The PCoIP Software Client provides two full-screen modes: one monitor and all monitors.

To switch from windowed mode to full-screen mode:

• To use one full-screen display, select View > Show Fullscreen One Monitor.

All open windows and applications will be moved to a single full-screen display. This is

equivalent to disconnecting all but one monitor from a physical host.

• To use all available full-screen displays, select View > Show Fullscreen All Monitors.

This mode shows full-screen displays on all client monitors.

To switch from Fullscreen One Monitor to Fullscreen All Monitors mode:

1. Reveal the menu bar by moving the mouse cursor to the top of a client display.

2. Select View > Show Fullscreen All Monitors.

To switch from Fullscreen All Monitors to Fullscreen One Monitor mode:

1. Reveal the menu bar by moving the mouse cursor to the top of a client display.

2. Select View > Show Fullscreen One Monitor.

Keyboard shortcut

You can also enter full-screen mode by pressing Ctrl+Option+Return while in windowed mode. The shortcut will

activate whichever full-screen mode was used last, or all monitors if no previous selection was made.

Changing the PCoIP Software Client Window Mode

© 2020 Teradici 18

Miminizing the PCoIP Software Client from a Full-screen Mode

To minimize a software client in full-screen mode:

1. Reveal the menu bar by moving the mouse cursor to the top of any display.

2. Select View > Minimize Client.

Activating Windowed Mode

To switch from full-screen mode to windowed mode:

1. Reveal the menu bar by moving the mouse cursor to the top of any display.

2. Select View > Leave Fullscreen.

Persistent Display Topology

Depending on the display topology mode you have selected, for example Fullscreen One Monitor, if you disconnect

and then reconnect to the session, it will maintain that same mode upon reconnection. The state and mode will be

preserved.

Keyboard shortcut

You can also minimize the client by pressing Ctrl+Option+m while in any full-screen mode.

Keyboard shortcut

You can also enter windowed mode by pressing Ctrl+Option+Return while in any full-screen mode.

Miminizing the PCoIP Software Client from a Full-screen Mode

© 2020 Teradici 19

Enhanced Audio and Video Synchronization

Enhanced Audio and Video Synchronization provides improved full-screen video playback,

reducing the difference in delays between the audio and video channels, and smoothing frame

playback on the client. This improves lip sync and reduces video frame drops for video playback.

This feature introduces a small lag in user interaction responsiveness when enabled. Using

enhanced audio and video synchronization will reduce the maximum frame rate.

Enhanced A/V Sync is enabled on a per-display basis, so you can dedicate individual displays to

playback without impacting responsiveness on the others.

To use enhanced A/V Sync:

1. If you are in full-screen mode, reveal the menu bar on the display you want to enhance by

moving the mouse cursor to the top of the screen.

2. On the display you want to enhance, select View>Enhanced A/V Sync to toggle the enhanced

sync mode.

Persistent Display Topology

The Enhanced Audio and Video Synchronization feature is persistent across sessions from the same client, provided

that the display topology has not changed.

Enhanced Audio and Video Synchronization

© 2020 Teradici 20

Sending a Ctrl-Alt-Del Command

To send the Ctrl-Alt-Del keyboard command to a remote workstation, select the Connection >

Send CTRL-ALT-DEL menu option.

Sending a Ctrl-Alt-Del Command

© 2020 Teradici 21

Changing the Language

In addition to English, the PCoIP Software Client also supports these languages: Chinese

(Simplified), French, German, Italian, Japanese, Korean, Portuguese (Brazil), Portuguese (Europe),

Russian, Spanish, and Turkish. During installation, you can select one of the supported languages.

To change the language after installation:

• In System Preferences > Language & Region > Advanced > General tab, select another

language in the Format language list.

Changing the Language

© 2020 Teradici 22

PCoIP Ultra

The PCoIP Client provides support for PCoIP Ultra, the latest protocol enhancements from

Teradici. PCoIP Ultra is optimized for truly lossless support with bit-exact color accuracy and

preservation of content detail at the highest frame rates.

PCoIP Ultra protocol enhancements propels our industry-recognized performance into the future

of remote computing, with faster, more interactive experience for users of remote workstations

working with high-resolution content.

PCoIP Ultra is disabled by default. To enable it, see Enabling PCoIP Ultra.

PCoIP Ultra Enhancements

In version 20.10, PCoIP Ultra provides the following benefits:

• Support for 4K/UHD high frame rate content.

• Efficient scaling across multicore CPUs leveraging AVX2 instruction sets.

• Highest image quality with efficient build-to-lossless and color-accurate.

• Dynamic network adaption and network resilience.

The Software Client for MacOS 20.10 with PCoIP Ultra contains certain limitations around USB

and printer plugin redirection. The latest beta version of PCoIP Ultra is available via our Technology

Preview version, as outlined below.

PCoIP Ultra Technology Preview

PCoIP Ultra is an evolving technology, and new capabilities and enhancements are introduced frequently.

If you would like to test unreleased versions of PCoIP Ultra, we invite you to join the PCoIP Ultra Technology Preview

program. Technology Preview users receive pre-release versions of Teradici software for use in non-production

environments, and provide feedback to our engineering teams.

To learn more and to join the technology preview, visit the Teradici Support site.

PCoIP Ultra

© 2020 Teradici 23

https://www.teradici.com/web-help/pcoip_agent/graphics_agent/windows/current/admin-guide/features/pcoip/ultra/
https://help.teradici.com/s/technology-preview-program

Requirements

To take advantage of PCoIP Ultra, you need to meet these requirments:

• A PCoIP agent (any type) 19.05.0 or later.

• A PCoIP Software Client for macOS, PCoIP Software Client for Windows or PCoIP Software

Client for Linux, 19.05.0 or later.

• The CPUs on both the agent and the client machines must support the AVX2 instruction set.

Enabling PCoIP Ultra

In order to enable PCoIP Ultra features you need to turn on GPO variables in the PCoIP Agent. For

information on enabling this with Linux, see Enabling PCoIP Ultra for Linux. For information on

enabling this with Windows, see Enabling PCoIP Ultra for Windows.

Auto-Offload with PCoIP Ultra

The auto-offload feature with PCoIP Ultra enables users to allow PCoIP Ultra to select the best

protocol, whether that is CPU or GPU, based on display rate change. CPU Offload is used by

default to provide the best image fidelity, GPU Offload is used during periods of high display

activity to provide improved frame rates and bandwidth optimization. This setting is only effective

if the remote host and client endpoints are capable of both CPU and GPU Offload. You can select

this option when you are enabling PCoIP Ultra.

For information on how to do this, see PCoIP Ultra - Windows, and PCoIP Ultra - Linux.

PCoIP Codec Indicator

When enabling PCoIP Ultra there will be an onscreen indicator at the bottom left corner of the

screen. PCoIP Ultra CPU optimization is indicated with a dark blue dot. PCoIP Ultra GPU

PCoIP Software Client for Mac users

Support for PCoIP Ultra on the PCoIP Software Client for Mac is provided via the PCoIP Ultra Technology Preview as

described above.

Requirements

© 2020 Teradici 24

https://www.teradici.com/web-help/pcoip_agent/graphics_agent/linux/current/admin-guide/features/pcoip/ultra/
https://www.teradici.com/web-help/pcoip_agent/graphics_agent/windows/current/admin-guide/features/pcoip/ultra/
https://www.teradici.com/web-help/pcoip_agent/graphics_agent/windows/20.10/admin-guide/configuring/configuring/#pcoip-ultra
https://www.teradici.com/web-help/pcoip_agent/graphics_agent/linux/20.10/admin-guide/configuring/configuring/#pcoip-ultra

optimization is indicated by a magenta dot. To disable this codec update the

 parameter:

Ensure that you maintain the space before and after the sign.

pcoip.code_indicator

~/.pcoip.rc pcoip.codec_indicator = 0

=

PCoIP Codec Indicator

© 2020 Teradici 25

Session Client Binary

The SDK is bundled with a session client binary, which can be invoked via command line or

programmatically from a pre-session client. The session client for macOS is located in the SDK

distribution on the following path:

• "path-to-unzipped-sdk-package"/sdk/usr/bin/ClientSession.app

For an example of programmatically invoking the in-session client, search for in

"path-to-unzipped-sdk-package"/sdk/usr/lib/pcoip-client/examples/broker_client_example/

main.cpp After the PCoIP connection is established, several command line options are available

from the in-session client, as documented in Customizing the PCoIP Session above.

launch_session

Session Client Binary

© 2020 Teradici 26

Customizable Session Features

The following PCoIP session features can be customized:

• Session Menu bar Visibility

• Disable Hot Keys

• Windowed or Fullscreen Mode

• Set Host Resolution

• Custom Client Branding

• Image Scaling

• Maintain Aspect Ratio

• USB Auto Forward

• USB VID/PID Auto Forward

• Disable USB

• Locale

• Session Log ID

• Log Level

• Log Folder

• Log Prefix

• Force Native Resolution

Examples show command-line usage

The examples shown here invoke the session client via the command line. You can also set these properties when

invoking the session client programmatically.

Customizable Session Features

© 2020 Teradici 27

Disable Session Menu Bar Visibility

To enhance the user experience the PCoIP Session Client enables the menu bar by default,

however some use cases may require that it be disabled, or hidden, in order to prevent the user

from accessing menu functionality. To disable the menu bar feature use the parameter

.

Disable Hot Keys

To improve usability, session hot keys, such as Ctrl+Option+F12(which disconnects a PCoIP

session)are available to users by default. The parameter for this feature is .

Windowed or Fullscreen Mode

Depending on your application needs, you can display the PCoIP session in either windowed or

fullscreen mode. Fullscreen mode allows the display topology to support multiple monitors as an

extended desktop; windowed mode gives you the flexibility to display multiple application windows

in parallel and switch between them quickly. Windowed mode improves the user experience, as

well as resulting in an increase in performance. Windowed mode is the default mode, and to

activate fullscreen mode use the parameter.

Set Host Resolution

Normally, the session client opens with arbitrary window dimensions. In some cases, you may

wish to lock the resolution of your host application displays. This ensures the user’s viewing

experience is consistent across different monitors and their native resolutions. The parameter for

this feature is .

• Host Resolution Limitations: It is only possible to specify one target resolution for all displays.

The host resolution will not perform to its optimal capability if you have monitors with different

resolutions.

disable-

menubar

disable-hotkeys

full-screen

set-host-resolution

Disable Session Menu Bar Visibility

© 2020 Teradici 28

Custom Client Branding

You can customize the branding of your custom session client in several ways by creating a client

branding package. These customizations affect the user’s experience once they have connected to

their PCoIP session. The parameters for this feature are and .

The following elements can be customized in the session client:

• The OS application title and logo

• The session client toolbar title and logo

• The logo displayed in the OS taskbar

• The following default menu item label:

• About PCoIP Client

• Quit PCoIP Client

• The content shown in the About dialog:

• Replace the dialog text

• Provide hyperlinks to corporate resources and product information

• Add a custom logo

• Customize a client alert and message window titles.

Image Scaling

The image scaling feature enables scaling on the client without having to specify the desktop

resolution. You can apply image scaling when the resolution of the client monitor is not the same

as the resolution provided by the host. This feature provides a smoother process for image scaling

on the client. The parameter for this feature is .

Maintain Aspect Ratio

If the host and client aspect ratios do not match, and this parameter is not used then the display

will be stretched to fit. The parameter for this feature is . If the native

aspect ratios of the host’s display and the client’s display do not match, the host’s aspect ratio will

branding-package branding-hash

enable-scaling

maintain-aspect-ratio

Custom Client Branding

© 2020 Teradici 29

be preserved and will appear in the client with black bars either on the sides or top and bottom of

the display.

USB Auto-Forward

Automatic bridging enables you to auto bridge all non-HID USB devices. Use the

 parameter.

USB Vendor ID/Product ID Auto-Forward

You can automatically forward up to 20 USB devices to the host at the start of the session by

calling the session client executable with and the required VID/PID pairs.

Devices that are auto-forwarded will appear in the USB Devices dialog box, enabling users to

connect or disconnect them from the host.

Disable USB

You can disable USB functionality in the client with the parameter.

Locale

The Local feature enables you to use the appropriate localized user interface for the client session.

This feature will make the session GUI more flexible to accomodate a wide range of languages.

You can choose the language translation you require by setting the parameter. The

following table states the available language translations and codes:

usb-auto-

forward

vidpid-auto-forward

disable-usb

locale

Locale Code Language

de German

es Spanish

fr French

USB Auto-Forward

© 2020 Teradici 30

Session Log-ID

 is a UUID that uniquely indentifies the session in all PCoIP log files.

Log Level

 is the log level parameter. It is possible to over-ride the default log-level, which is 2, by

specifying a different log-level parameter. All messages at the specified level or lower will be

logged.The following parameters apply:

• 0 = Critical

• 1 = Error

Locale Code Language

it Italian

ja Japanese

ko Korean

pt Portuguese (EU)

pt_BR Portuguese (Brazil)

ru Russian

tr Turkish

zh_CN Chinese (Simplified)

zh_TW Chinese (Traditional)

Default Language

By default, the language is set to English.

log-id

log-level

Session Log-ID

© 2020 Teradici 31

• 2 = Info

• 3 = Debug

Log Folder

 is he Log Folder parameter. This is the user defined folder for log files.

Log Prefix

 is the Log Prefix parameter. This is the log filename that the SDK will add time

information to for each log file. The resulting log file will be [log-folder]/[log-prefix]

[timeinformation].

Force Native Resolution

The resolution of the client monitor can be set to the native resolution when the session client is

launched using the parameter

Troubleshooting and Support

When reproducing issues for the purposes of troubleshooting and support, set the log level to Debug.This will enable

you to capture a log of all information messages and errors.

log-folder

log-prefix

force-native-monitor-resolution

Log Folder

© 2020 Teradici 32

Branding Your Session Client

You can customize the branding of your custom session client in several ways by creating a client

branding package. These customizations affect the user’s experience once they have connected to

their PCoIP session. The following elements can be customized in the session client:

• The OS application title and logo

• The session client toolbar title and logo

• The logo displayed in the OS task bar

• The following default menu item label:

• About PCoIP Client

• The content shown in the About dialog:

• Replace the dialog text

• Provide hyperlinks to corporate resources and product information

• Add a custom logo

• Customize client alert and message window titles.

Branding Your Session Client

© 2020 Teradici 33

Supporting USB Devices

Transferring non-HID USB devices from the client to the host is called bridging. Both the PCoIP

agent on the host machine and the PCoIP client must enable bridging before devices can be

transferred. Administrators can globally disable USB bridging support, or enforce device whitelists

or blacklists, using GPO variables on the host machine. Clients cannot bridge devices that are

disallowed by the agent.

There are two methods of providing USB support from your PCoIP client:

• Automatic: Automatically bridged devices are passed from the pre-session client to the

session client executable, which forwards them to the host agent. No user interaction is

required.

• Manual: Manually bridged devices are selected by the user, during a PCoIP session, from the

session client UI.

Remote USB Device Support

If a pointer type USB device, for example wacom tablets, mouse, or stylus device, is remoted, you

need to grant PCoIPClient.app computer control to enable it to rendor and move the cursor. You

can enable this through the Preferences>Security & Privacy>Privacy>Accessibility location on

your system settings.

Supporting USB Devices

© 2020 Teradici 34

System Precedence

The following section outlines the scope precedence commands between the System Scope and

User Scope. If you are updating individual user settings then the user scope locations and

parameters can be followed. Due to this order of precedence where by the system scope setting

takes precedence over the user scope setting, a change in the user settings may not take effect if

the system scope setting has been updated.

System Scope

The .plist files are located in /Library/Preferences/. The following commands detail the read,

delete and write sudo functions:

If sudo is not used in the command, it will automatically go to the user settings.

User Scope

Within the user scope the .plist files are located in ~/Library/Preferences/. The following

commands detail the read, delete and write functions:

If sudo is used, it will go to the system settings.

sudo defaults read com.teradici.Teradici PCoIP Client.plist <Key>

sudo defaults delete com.teradici.Teradici PCoIP Client.plist <Key>

sudo defaults write com.teradici.Teradici PCoIP Client.plist <Key> <value>

defaults read com.teradici.Teradici PCoIP Client.plist <Key>

defaults com.teradici.Teradici PCoIP Client.plist <Key>

defaults write com.teradici.Teradici PCoIP Client.plist <Key> <value>

System Precedence

© 2020 Teradici 35

Re-boot Requirement

The macOS machine may require a re-boot for the system configuration to take effect.

System Precedence

© 2020 Teradici 36

Mapping Function Keys

You can enable Function keys on the PCoIP Session Client SDK by going to Apple>System

Preferences>Keyboard> and selecting the function keys you wish to use as standard keys. When

the system is configured to not use function keys the PCoIP Software Client does not get the

function key codes from the system when the keys are pressed. In this instance the function keys

are usd for other system features such as turning the volume up and down.

Mapping Function Keys

© 2020 Teradici 37

Broker Client API Change Log

This section outlines API call updates and changes for the Broker Client API from the different

versions of the PCoIP Client SDK for macOS.

20.10 - No updates or changes.

20.07 - No updates or changes.

20.04 - No updates or changes.

20.01 - No updates or changes.

19.11 - No updates or changes.

19.08 - A Session Provision Error was added for provisioning failures.

Broker Client API Change Log

© 2020 Teradici 38

The Broker Client API Example

The included sample broker client demonstrates how the APIs can be used to customize and

control the pre-session and session phases of the connection.

The following steps outline how to build this example:

1. Install the SDK.

2. Create a build/directory inside broker_client_example.

3. From build/, run cmake configure and build commands.

4. Update the login_info.txt with the address and credentials of an authentic agent so that the

built client can talk to the agent.

5. Run the broker_client_example application. It should be able to launch a brokered PCoIP

Session to the agent by invoking the session_client.

The Broker Client API Example Sequence

This section describes how the Broker Client API example implements the PCoIP session

sequence. It also provides an overview of invoking and using the executable session client.

Code is an API Demonstration Only

The sample session client, described in the following sections, demonstrates a simple connection scenario using the

supplied . The example unrealistically assumes that all requests and calls succeed as

expected, and performs only basic error handling. An actual client implementation is likely to be far more complex; for

example, you will need to handle failed broker certificate verification, account for other authentication steps beyond a

simple user ID and password combination, and any other circumstances dictated by your system requirements.

broker_client_library

The Broker Client API Example

© 2020 Teradici 39

Custom Broker Client Library Implementations

PCoIP clients interact with PCoIP-compatible brokers and PCoIP agents using an abstraction layer called a broker

client library. The following example uses the supplied broker client library. You may, however, choose to write your

own broker client library to meet specific requirements, or use a thirdparty broker library which does not use the PCoIP

Broker Protocol. Refer to the PCoIP® Connection Broker Protocol Specification for details on how to design and

implement your own connection broker.

The Broker Client API Example Sequence

© 2020 Teradici 40

https://docs.teradici.com/find/product/cloud-access-software/2019.05/pcoip-broker-protocol/2.12.0?subscriptionName=cloud-access-plus

Using the Broker Client Example

The SDK provides a sample command line pre-session client called broker client example. This

would enable you to call the included broker client libraries and establish a PCoIP connection. The

broker client example demonstrates the success path for establishing new PCoIP sessions.

The sample broker client is located here:

"path-to-unzipped-sdk-package"/sdk/usr/bin/broker_client_example

The two relevant files for the broker client example are:

•

•

The executable is the sample command-line client; the text

file contains authentication information used by the client.

In the example above:

• The FQDN of the host server is

• The domain is

• The user is

Do not Use the Broker Client Example in Production

The broker client is provided as an example only, and should not be used in production. The client does not have

thorough error handling and does not validate or sanitize user input.

broker_client_example

login_info.txt

broker_client_example login_info

About

The broker client example uses a small local text file to supply session input values. The following is a sample

 file (one line):

 login_info.txt

login_info.txt

sal-w2k8-ch605.autolab.local autolab autorunner "mypassword" sal-w2k8-ch605

sal-w2k8-ch605.autolab.local

autolab

autorunner

Using the Broker Client Example

© 2020 Teradici 41

• The password is

• The host name is

Remote sessions established by are exactly the same as sessions

established using the PCoIP software client, except that the input values are provided by

 instead of the client’s user interface.

mypassword

sal-w2k8-ch605

broker_client_example

login_info.txt

Using the Broker Client Example

© 2020 Teradici 42

Initiate Broker Connection Flow

To initiate the broker connection with the broker client example, set up your file

and then call using login_info.txt as an argument.

To initiate the broker connection using the broker client example:

1. Open in a text editor.

2. Add the following information, in this order, separated by spaces:

• The FQDN of the host server

• The server domain

• The user name

• The user password

• The host name

3. Save the text file.

4. Open a terminal window and type: The

broker client example will display a status message similar to the one shown next:

<<<<<<< HEAD =======

e2b618efae9bec0f92f0a4fa95e810d724588b2e

login_info.txt

broker_client_example

login_info.txt

xmlbroker_client_example -i login_info.txt

Connected Successfully.
Desktop ID : sal-w7p64-sa15.autolab.local
ip_addr : 10.64.60.147
port : 4172
connect_tag:
SCS1fw0Zbk+Eu7q2iz0/M7mxfEE52au/3Jedtgp16L/rA8iB00+Er+YJd0yIL0xd9M
v5V0CDLSDmUNkOCwyyV1+u3w1aA7hXxEWmzhAA
session_id : 2305843009213693954
sni : SAL-W7P64-SA15
URI: "teradici-pcoip://10.64.60.147:4172?sessionid=
2305843009213693954&sni=SAL-W7P64-SA15", PARAMETERS: "connect-
tag=SCS1fw0Zbk%2bEu7q2iz0%2fM7mxfEE52au%2f3Jedtgp16L%2frA8iB00%2bE
r%2bYJd0yIL0xd9Mv5V0CDLSDmUNkOCwyyV1%2bu3w1aA7hXxEWmzhAA"

Initiate Broker Connection Flow

© 2020 Teradici 43

Launching the Session Client from Broker Client Example

Use the switch (lowercase L, for launch) to have the broker client example invoke the session

client. This enables you to send invoke the session client without worrying about the 60-second

connect tag window.

To establish a new PCoIP connection using the switch:

1. Open a command prompt and change directory to

2. Run the command line client, providing the file as an argument:

```

e2b618efae9bec0f92f0a4fa95e810d724588b2e

-l

l

bin

login_info.txt

broker_client_example -i login_info.txt -l
<<<<<<< HEAD

Launching the Session Client from Broker Client Example

© 2020 Teradici 44



Session Client API Features

A list of the features specific to the Session Client API.

Session Client API Features

© 2020 Teradici 45



Session Client API Change Log

This section outlines API call updates and changes for the Session Client API from the different

versions of the PCoIP Client SDK for macOS.

20.10 - No updates or changes.

20.07 - No updates or changes.

20.04 - No updates or changes.

20.01 - Removed invalid session num windows configuration item: See i_config_provider for more

details.

19.11 - No updates or changes.

19.08 - Character arrays changes to standard C++ strings: See i_session for more details.

Session Client API Change Log

© 2020 Teradici 46



How to Establish a PCoIP Session

Before you can establish a PCoIP session with a host desktop, gather the following host desktop

details:

• IP address

• Port number

• Session ID

• Server name indication (SNI)

• Connection tag

This information can then be passed to the provided in-session client to establish a PCoIP session

programmatically. See the example code for specific call syntax. In terms of programming

interface, there are two ways that the connection and security information can be presented to 

:

Pass the pieces of information individually to the executable. The following command invokes 

 to establish a PCoIP session and passes the connection and session

information as parameters, where:

• Connection tag: 

• IP address: 

• Log ID: 

• Session ID: 

Brokered Session Connection

If you are using a brokered session, this is handled by the broker libraries automatically.



ClientSession.app

ClientSession.app

SCS1WsopFJ3iz1l48PTJMXFkcD4b6M9aiakHXH3ellLhUROBceWAifSSn%2b4AV1FC
8IihWVmsISmYFKeA25AtzFrdMpdaCtqlic0zfxAA

10.64.60.115

a1ff3a80-8801-1038-19bd-0005680aded

2305843009213693961

How to Establish a PCoIP Session

© 2020 Teradici 47



Encode all information into a string container (URI) and then pass to the executable. The

following command invokes client_session to establish a PCoIP session and passes the

connection tag as a parameter and a URI encapsulating the IP address and Session ID in a

string container, where:

• Connection tag: 

• URI: "teradici-pcoip://10.64.60.115:4172?sessionid=230584300921369396"

open /Applications/ClientSession.app -i connect-tag=
SCS1WsopFJ3iz1l48PTJMXFkcD4b6M9aiakHXH3ellLhUROBceWAifSSn%2b4AV1FC
8IihWVmsISmYFKeA25AtzFrdMpdaCtqlic0zfxAA address=10.64.60.115
session-id=2305843009213693961
log-id=a1ff3a80-8801-1038-a9bd-00505680aded

SCS1WsopFJ3iz1l48PTJMXFkcD4b6M9aiakHXH3ellLhUROBceWAifSSn%2b4AV1FC
8IihWVmsISmYFKeA25AtzFrdMpdaCtqlic0zfxAA

URI Format Documentation

There is a document describing the URI format in the root of the SDK.



open /Applications/ClientSession.app connecttag=
SCS1WsopFJ3iz1l48PTJMXFkcD4b6M9aiakHXH3ellLhUROBceWAifSSn%2b4A
V1FC8IihWVmsISmYFKeA25AtzFrdMpdaCtqlic0zfxAA "teradicipcoip://
10.64.60.115:4172?session-id=230584300921369396"

How to Establish a PCoIP Session

© 2020 Teradici 48



PCoIP Session-Creation Steps and Actors

The steps indicated below are used and documented in the bundled sample code. Refer to the

code for specific function calls, expected return values and error-handling requirements. The

example C++ code can be found in the SDK package located here:

Direct (non-brokered) connections

When there is no PCoIP broker in a system, as in direct connections, the PCoIP agent acts as its own broker. Clients

make the same calls to the Broker Client Library whether there is a PCoIP broker inline or not.



PCoIP Session-Creation Steps and Actors

© 2020 Teradici 49



PCoIP Session Sequence used by the Sample Client 

Each of these steps is used in the sample code, with a comment identifying the step number.

PCoIP Session-Creation Steps and Actors

© 2020 Teradici 50



1. Set a logging function The  requires users to provide a log function

as part of the logging mechanism. A log function template is provided in the example code.

2. Create a broker handle Create a handle for the broker instance.

3. Set client information This information identifies your client to the broker. It should include the

client name, client version, and client platform.

4. Set broker address and behavior on unverified certification This step identifies the address of

the broker you want to connect to, and specifies error handling in the event the broker identity

cannot be verified.

5. Authentication between the broker and the client This step requests an authentication

method from the broker, and then submits the user’s authentication information to the broker

using the supplied authentication method. The client must implement all the authentication

methods required by the broker.

6. Request desktop list Once the client is successfully authenticated by the broker, request a list

of host servers (desktops) that the authenticated user is allowed to access.

7. Retrieve desktop info Loop through each desktop in the list acquired in step 6, requesting the

name and ID of each desktop.

8. Process the desktop list Perform any processing required on the desktop list, and provide it to

the user interface for selection.

9. Connect to selected host server This step asks the broker to set up the PCoIP session. The

broker then contacts the agent, which supplies the necessary information (most notably the

session tag) the client will need to establish the connection later. The PCoIP session is not

established yet at this stage.

10. Clear session with broker On a successful connection, clear the broker session. This

effectively disconnects the client from the broker.

Custom Log Implementations

You can design and implement your own logging functionality, so along as it follows the same callback signature of

the log function template that is required by the PCoIP Client SDK API.



broker_client_library

Desktop Selection Presentation Customization

At this stage, you can also customize the dialogue and interface the user will use to select a desktop.



PCoIP Session-Creation Steps and Actors

© 2020 Teradici 51



11. Get desktop connection information and launch the session Request the connection and

security properties from the desktop (for example, its IP address, its port number, or a session

ID), and handle errors if any of the required properties are not returned.

12. Proceed with established session This step invokes , and implements the

actual PCoIP connection. For specific instructions regarding establishing PCoIP connections,

see How to Establish a PCoIP Session.

13. Free desktop connection information When the in-session client has been invoked, dispose of

the collected desktop information.

14. Destroy the broker client handle Destroy the broker handle.

client_session

PCoIP Session-Creation Steps and Actors

© 2020 Teradici 52



Session Client Integration

There are two methods of integrating the in-session phase, integrating using the session client

binary or using the Session Client API. The following diagrams show these methods in relation to

integrating the SDK into a custom application:

Session Client Binary Integration

This method uses the session client binary as a separate in-session application. This is the

simplest way to use the Client SDK and it is recommended as the initial mode to use for

developing your own client. In this mode, the pre-session and session phases are handled by

separate executables:

• Write a custom pre-session executable according to your workflow and needs using the 

 source code as a starting point. For more information see Session

Client API Integration.

• Use the stock  executable, which is located within the SDK at "path-to-

unzipped-sdk-package"/MacOS/ClientSession.app, to establish the connection.

broker_client_example

ClientSession.app

Security Considerations

The values passed to the ClientSession app executable include sensitive information required to establish a session

with the host. In particular, the connection tag is a single-use time-limited (60 seconds) token that allows the

ClientSession app executable to connect to the host as an authenticated user. If an attacker is able to gain visibility to

command line parameters as they are passed to client session, it is possible that they could use them before

ClientSession app does and gain access to the host as that user. It is vital to ensure good security practices are

applied to the client machine to prevent it from being compromised. This type of attack can be avoided completely by

integrating the pre-session and ClientSession app into a single executable as described in the following section.



Session Client Integration

© 2020 Teradici 53



Binary Integration 

Session Client API Integration

This method uses the Session Client API to integrate the in-session functionality into a custom

application. This method is necessary if you wish to modify the behavior of the ClientSession app

executable beyond that which is possible via its command line interface, or if you need to integrate

the pre-session and ClientSession app into a single executable. In this mode you will use:

• The broker_client_example source code as a starting point for writing custom pre-session

functionality

• The ClientSession app source code as a starting point for integrating with the Session Client

API.

The Session Client API provides a simple high level C++ interface for configuring, starting, and

stopping a session using the values obtained from a broker.

Session Client API Integration

© 2020 Teradici 54



Session Client API Integration 

*Partner Virtual Channel Plugins can be developed using the Virtual Channel SDK to enable this

you can combine the PCoIP Client SDK with the PCoIP Virtual Channel SDK. For more information,

see the Virtual Channel SDK.

Session Client API Integration

© 2020 Teradici 55

https://https://docs.teradici.com/find/product/cloud-access-software/2019.08/vchan-sdk


Minimal Client Example

The following is an example of how to use the Teradici broker libraries and the PCoIP Session

libraries to connect to an agent and launch a PCoIP session.

The following steps outline how to build this example:

1. Install the SDK.

2. Create a build/directory inside minimal_client/

3. From build/, run cmake configure and build commands.

4. Update the login_info.txt with the address and credentials of an authentic agent so that the

built client can talk to the agent.

5. Run the built minimal_client application. It should be able to launch a brokered PCoIP Session

to the agent.

Minimal Client Example

© 2020 Teradici 56



Passing Customization Parameters to the Session
Client

When using the  parameter to automatically pass session information to the session client, you

can pass additional session client parameters by enclosing them in double quotes. This enables

you to demonstrate session client functionality without racing to build a command line string

within the session client’s 60-second window. For example, to invoke the session client with the

menu bar disabled, type:

l

./broker_client_example.app/Contents/MacOS/broker_client_example -i 
login_info.txt -l "disable-menubar"

Passing Customization Parameters to the Session Client

© 2020 Teradici 57



Using the Client Session API

Use of the Client Session C++ API is demonstrated in 

. It includes the steps outlined in the

diagram below:

 

PCoIP Session Client API Sequence Diagram

Each of these steps is used by the Session Client API, with a comment identifying the step

number:

1. Setup Environment and Implementations: Os specifc initialization. Instantiate a Configuration

Provider object.

2. Parse Command Line: Define and parse supported command line parameters.

3. Setup Session Options: Validate the options passed via the command line and setup the

Configuration Provider object accordingly.

4. Setup Session Connection Information: Pack the session parameter, received via the

command line, into the structures required by the API.

[path to SDK]/sdk/usr/lib/examples/

client_session_example_client_session_main.cpp

Using the Client Session API

© 2020 Teradici 58



5. Get Session Instance and Run:: Obtain the main session object, set the Configuration Provider

and run the session. The run call blocks until the session is terminated.

6. Post-Session Clean-up: Performs any post-session shutdown processing.

Using the Client Session API

© 2020 Teradici 59



Creating a Branding Text Layout File

The layout file format used to customize the session client is an UTF-8 XML text file. The layout

schema is a top-level  element with a version attribute describing the

schema version, and containing the required elements described next:

The available elements are outlined in the following table:

<pcoip-client-branding/>

<pcoip-client-branding version="1.0">
...
</pcoip-client-branding>

Parent

Element

Child

Element

Description

Required! The name of your custom session client. This will be used as the

application window file.

Required! The file name of your application icon. In Windows, this appears in the

Windows toolbar and the window header.

Required! Describes the text labels used in OS toolbar menu's.

The text label for the About... menu item. Optional. Without this field, there will not be

an About menu item.

The text label for the Quit... menu item. Optional. Without this field, you will not have

a Quit menu item.

Required! Describes the contents of the About... dialog. Must have the following

required attributes: title (string): The dialog text and minWidth (number): The

mimumum pixel width of the dialog. For example: 

<app-

name>

<app-

icon>

<toolbar-

menu>

<about-

item>

<quit-

item>

<about>

<about title="My Custom 

Client" minWidth="100">

Creating a Branding Text Layout File

© 2020 Teradici 60



A full text layout file looks like this:

Parent

Element

Child

Element

Description

Describes a line of text in the dialog. All lines are optional, but the About window will

be empty unless you provide at least one.  accepts the following attributes: 

align (string keyword): The text alignment; for example, "center". This alignment

applies to all child elements of the line. Lines can be self-closed to create a blank line

().  can contain the following elements:  contains a filename for a

logo or other graphic element: .  contains

the display text for each line: 

.  takes a url parameter and creates a working hyperlink: 

.

<line>

<line>

<line> <logo>

<logo>about_logo.png</logo> <text>

<text>This text is displayed on the line. </

text> <hyperlink>

<hyperlink url="www.teradici.com">Teradici</hyperlink>

<?xml version="1.0" encoding="UTF-8"?>
<pcoip-client-branding version="1.0">
<app-name>My Custom Client</app-name>
<app-icon>app_icon.png</app-icon>
<toolbar-menu>
<about-item>About My Custom Client</about-item>
<quit-item>Quit My Custom Client</quit-item>
</toolbar-menu>
<about title="About My Custom PCoIP Client" minWidth="0">
<line align="center"><logo>about_logo.jpg</logo></line>
<line />
<line align="center"><text>My PCoIP Client</text></line>
<line align="center"><text>Version 0.0.0</text></line>
<line align="center"><text>© Copyright 2016 My
Corporation</text></line>
<line align="center">
<hyperlink url="www.my-company.com">My company</hyperlink>
</line>
<line />
<line align="center">
<text>For help, click here: </text>
<hyperlink url="www.google.com">Google</hyperlink>
</line>
</about>
</pcoip-client-branding>

Creating a Branding Text Layout File

© 2020 Teradici 61



Creating a Branding Package

In order to customize your session client, you must create a client branding package using the

Teradici Custom Branding Package Utility. The Teradici Custom Branding Package Utility is located

in the following location:

• macOS clients: "path-to-unzipped-sdk-package"/sdk/usr/bin/TeradiciBrandingPackageUtility 

To create a custom branding package:

1. Create a product icon as a png file at 128px x 128px.

2. Create a company logo as a png file at any size.

3. Create a text layout file describing the customized UI element strings and dialog content.

4. Create the branding package with .

The system will respond with the output file and hash:

5. Note the output file name and the hash value. These will be passed to 

TeradiciBrandingPackageUtility

TeradiciBrandingPackageUtility.exe -x my_custom_branding.txt -i 
my_custom_icon.png my_custom_logo.png -o my_custom_branding.bp

Output file: my_custom_branding.bp
Hash:cbc3fd3c6d001a1e1f06342bcccf2a62bd748c3cf1dd2e4c9c29561ea07bd089

client_session.

Creating a Branding Package

© 2020 Teradici 62



Using the Branding Package

Once you have created the branding package, it can be used by the session client. The pre-session

client is responsible for verifying the package and passing it to the session client executable.

To use the branding package:

1. Verify the branding package signature.

2. Call the session client executable and pass the branding package name and hash using the

parameters  and 

For example (one command):

-branding-package -branding-hash.

open /Applications/ClientSession.app -branding-package my_custom_
branding.bp
-branding-hash
cbc3fd3c6d001a1e1f06342bcccf2a62bd748c3cf1dd2e4c9c29561ea07bd089
<other-params>

Using the Branding Package

© 2020 Teradici 63



Limits on Customization

The macOS has elements which are part of the operating system user interface and cannot be

modified programmatically, as described in the following sections.

macOS Limitations

The following run-time limitations are enforced by macOS on the application menu (beside the

menu apple icon menu):

• The menu title cannot be altered. The menu title will be PCoIP Client.

• The Hide... menu item label cannot be altered. The menu item will be Hide PCoIP Client.

• The Quit... menu item label cannot be altered. The menu item will be Quit PCoIP Client.

The session client will also appear as PCoIP Client in the Force Quit dialog.

Bypassing run-time Configuration Limitations

The limitations described here are enforced at run time. It is possible to bypass these restrictions by editing the 

 file. Modifying this file will invalidate the Teradici signature.



plist

macOS 10.12 Application Support

In order to enable branding packages in macOS 10.12, you must remove the quarantine bit from all files in the session

SDK package. If you To remove the quarantine bit, open a terminal and type:



xattr -dr com.apple.quarantine <PATH_TO_SDK_FOLDER>

Limits on Customization

© 2020 Teradici 64



Core API Change Log

This section outlines API call updates and changes for the Core API from the different versions of

the PCoIP Client SDK for macOS.

20.10

PcoipClientInitData

• PcoipClientInitData structure has been changed for licensing related data. The following fields

have been added:

• proxyServer

• proxyPort

• numberOfActivationCodes

• activationCodes

pcoip_core_api.h

• pcoip_core_api.h structure change: struct LicenseInfo has changed to the following:

The change to this struct affects the pcoip_client_get_licensing_info() API function. Replaced the

int32_t daysRemaining with time_t expiryTime and added field bool hasExpiry.

• New api: pcoip_client_log_level_get(). Returns the current event level defines as

PCOIP_EVENT_LEVEL_* constants.

struct LicenseInfo
{
    enum PCoIPLicensingResult resultCode;   ///< the result code as reported by 
the licensing module
    bool hasExpiry;  ///< license has a valid expiry time
    time_t expiryTime;  ///< time that license expires expressed as UNIX time
};

Core API Change Log

© 2020 Teradici 65



20.07

pcoip_core_api.h

• PcoipClientinitData structure change: trustCenterUrl renamed to licServerURL.

• New api: pcoip_core_aws_allowed(). Returns whether connections to Amazon WorkSpaces

are allowed.

• New api: pcoip_core_api_vmware_allowed(). Returns whether connections to VMware Horizon

are allowed.

• New api: pcoip_core_api_pcoip_allowed(). Returns whether PCoIP connections are allowed.

20.04

pcoip_core_api.h

• pcoip_client_init() signature change: Uses new PcoipClientInitData structure. It includes data

needed for licensing in future releases. The new data members should be left empty. Unused

parameters were removed. 

• Deprecated api: pcoip_client_connection_callback_register()

• New api: pcoip_client_connection_callback_register(). Callback signature changed to include

PCoIPAuth state for licensing in future releases.

• New api: pcoip_client_usb_set_local_termination_blacklist(). Sets devices that should be

locally terminated.

pcoip_disconnect_types.h

• Added value to enum ePCOIP_DISCONNECT_CAUSE. Will be used for licensing in future

releases.

certificate_store.h

• certificate_store set_store_location() removed. Location can now only be set during

construction of certificate_store.

20.07

© 2020 Teradici 66



20.01

• No updates or changes

19.11

• Relative Mouse Feature: See pcoip_core_api for details.

19.08

• No updates or changes.

20.01

© 2020 Teradici 67

https://www.teradici.com/web-help/pcoip_client_sdk/windows/20.01/pcoip_core_api_integration/#pcoip-core-api


PCoIP Core Library Integration

The core library allows an application developer to integrate a PCoIP session directly into an

application. The core library facilitates connection to a remote host, decoding PCoIP image data

directly into an application supplied frame buffer as well as remoting audio, keyboard and mouse

events and supported USB devices. The application is responsible for all of the interactions with

the window manager and the local operating system. The following diagram shows how an

application would integrate the core library and broker library into a custom application.

PCoIP Core API

This method uses the PCoIP Core API to integrate the PCoIP protocol into a custom application.

This method is necessary if you want custom features in the client beyond that which is possible

using the Session Client API. 

PCoIP Core API

This diagram shows the architecture with a custom application integrating the core library. 

PCoIP Core Library Integration

© 2020 Teradici 68



*Partner Virtual Channel Plugins can be developed using the Virtual Channel SDK, to enable this

you can combine the PCoIP Client SDK with the PCoIP Virtual Channel SDK.

PCoIP Core API and Application Functionality

Using the Core API the application developer has more control over the client application than the

PCoIP Session API but the developer must implement the integration between the local OS and the

core library.

Broker Interactions

The core library does not implement any of the broker protocol interactions. The application is

responsible for obtaining the PCoIP agent address, port number and session tag, using the Broker

Client API or some other brokering method, and passing these to the core library.

Session Establishment

The application must provide the PCoIP agent address, port number and session tag to the core

library in order to establish a PCoIP session.

Display Topology

The application is responsible for deciding what displays to present to the user. The application

may specify up to four displays with resolutions up to 4096x4096. The application must determine

the correct display position and the rotations (if any).

Keyboard Events

The application is responsible for handling local keyboard events, and providing the core library

with scan codes to send to the remote host.

Mouse Events

The application must provide the mouse events, with either absolute or relative coordinates, for

the core library to send to the remote host.

PCoIP Core API and Application Functionality

© 2020 Teradici 69



Touch Events

If the application supports touch events, the core library can forward these to the remote host.

Cursor Handling

Local cursor handling is critical for providing the most responsive user experience possible. The

application is responsible for updating the local cursor shape and position on call-back from the

core library.

USB Redirection

The application is responsible for determining if any USB devices should be connected to the

remote session. The core library will disconnect the USB devices from the local system and

redirect the device to the remote system.

Session Reconnection

The core library supports reconnecting a session (for up to 20 minutes) in the event of a network

disruption. The application is notified when a network disruption occurs and provides a method for

terminating reconnection attempts.

Session Termination

The core library provides a method for the application to terminate the session.

Touch Events

© 2020 Teradici 70



Setting Up the Development Environment

Once you have successfully established a session between a PCoIP Software Client and a PCoIP

host, you can start developing your own PCoIP client. To begin, set up your client development

environment, as discussed next.

To set up your client development environment:

Currently OpenSSL and Boost are required as third party libraries. Download and install the third

party libraries to your system. The CMake modules provided automatically detects the system

libraries at CMake configure time.

1. Unzip the SDK tar file.

2. Copy the files from usr/bin, usr/include/ and usr/lib to the corresponding system directories, /

usr/bin/, /usr/include and /usr/lib.

3. Copy the  into /Applications/ClientSession.app if you like to use the 

 from the system Applications directory. You can also copy the .dylibs

from the  to the directory where you are building your custom application.

4. At this point the SDK is installed on the system. For information on how to link the SDK

libraries with your custom client application, see Linking the SDK for macOS.

CMake support for third-parties

When the third-party libraries are installed on the system, the CMake modules will automatically find them. Please see

Linking the SDK for macOS section for instructions on linking the SDK libraries with your custom client application

using CMake.



ClientSession.app

ClientSession.app

ClientSession.app

Setting Up the Development Environment

© 2020 Teradici 71



Updating SDK Components

Updating the SDK to a new version can be done by replacing the old binaries with new versions in

place. There is no special upgrade path.

Updating SDK Components

© 2020 Teradici 72



macOS Build Prerequisites

The following must be installed to build the PCoIP Client SDK on macOS:

• Xcode 10 https://developer.apple.com/xcode/downloads/

• Boost 1.71

• OpenSSL 1.1.1

• CMake 3.17.2 or above: Download

CMake Version Requirement

The PCoIP Client SDK does not support versions of CMake higher than 3.17.2.



macOS Build Prerequisites

© 2020 Teradici 73

https://developer.apple.com/xcode/downloads/
https://cmake.org/files/


Linking the SDK for macOS

This section includes instructions for linking the SDK libraries with your custom client application:

1. Open a Terminal window and change directory to the root of the mounted SDK disk image.

2. Copy the SDK files to desired location for SDK development, refered to as 

below.

3. To use the core APIs use the following commands on your applications CMake file for linking

your application to the libraries that are needed from the SDK.

4. Use the following command to link your application to the core library using the CMake

command, replacing  with your own application name:

You can link to any other required libraries similarly by appending it to the above command.

<sdk_location>

CMake modules location

The CMake modules for finding the libraries within the package are located inside the SDK framework /

/PCoIPSoftClientSDK.framework/Resources/CMake. The required libraries are

namespaced by PCoIPSoftClientSDK.



<sdk_location>

list(APPEND_CMAKE_PREFIX_PATH " /<sdk_location>/PCoIPSoftClientSDK.framework/
Resources/CMake")

find_package(PCoIPSoftClientSDK REQUIRED)

<your_application>

target_link_libraries(<your_application> PRIVATE 
PCoIPSoftClientSDK::pcoip_core )

Linking the SDK for macOS

© 2020 Teradici 74



Setting Up a PCoIP Agent Test Environment

Before developing your custom client, you should set up a working PCoIP system. Teradici

recommends establishing a small proof-of-concept system for custom client testing, consisting of

a host machine with an installed PCoIP agent.

To establish a working proof-of-concept test system:

1. Establish your host virtual machine and determine the PCoIP agent that best fits your actual

PCoIP environment.

2. Install the PCoIP agent on the host machine. For PCoIP agent installation instructions, refer to

the appropriate administrators' guide:

• PCoIP Standard Agent for Windows Guide

• PCoIP Graphics Agent for Windows Guide

• PCoIP Standard Agent for Linux Guide

• PCoIP Graphics Agent for Linux Guide

3. Install your agent license on the host machine. For license installation instructions, see the

Administrators' Guide for your host machines PCoIP agent.

License Requirement

Before using your test environment, you must install a PCoIP agent development license on the host machine. You

received a license when you subscribed to a Teradici All Access solution, specifically Cloud Access or Cloud Access

Plus. If you do not have a license, obtain one from Teradici before proceeding.



PCoIP System Architecture Reference

For details about proof-of-concept deployments, including supported PCoIP agents, environments, and operating

systems, see Teradici All Access Architecture Guide.



Setting Up a PCoIP Agent Test Environment

© 2020 Teradici 75

https://www.teradici.com/web-help/TER1608004/Default.htm
https://www.teradici.com/web-help/pcoip_agent/standard_agent/windows/19.08/admin-guide/installing/overview/
https://www.teradici.com/web-help/pcoip_agent/graphics_agent/windows/19.08/admin-guide/installing/overview/
https://www.teradici.com/web-help/pcoip_agent/standard_agent/linux/19.08/admin-guide/installing/installing/
https://www.teradici.com/web-help/pcoip_agent/graphics_agent/linux/19.08/admin-guide/installing/installing/


Connecting To Your PCoIP Agent

Once your test system is set up, you can establish PCoIP connections to it using Teradici PCoIP

Software Clients. For environment testing and troubleshooting purposes, the Teradici PCoIP

Software Client is available here:

• Teradici PCoIP Software Client for Mac

Establishing a PCoIP Connection Using a Teradici PCoIP
Software Client

To test your development environment, make a direct (unbrokered) connection to your

development host using a Teradici Software Client. If you are able to connect using a Teradici

software client, your host is correctly configured. The following illustrations show examples of the

pre-session phases using a Teradici software client:

Pre-Session Connection

The user of the PCoIP Client request the PCoIP Agent by providing the FQDN of the remote

workstation where the PCoIP Agent has been installed. 

Connecting To Your PCoIP Agent

© 2020 Teradici 76

https://docs.teradici.com/find/product/cloud-access-software/2019.08/software-client-for-macos


The user of the PCoIP client is then autenticated. If authentication is successful, a PCoIP session

will be launched. 

Establishing a PCoIP Connection Using a Teradici PCoIP Software Client

© 2020 Teradici 77



PCoIP Support Bundler Tool

Teradici may request a support file from your system to help troubleshoot and diagnose PCoIP

issues.

To create a support file:

1. Open a terminal window.

2. Launch the support bundler: 

The file will be created and placed in the user's home directory.

Customizable Script

This script can be customized, in the case where the log files are located in a different location the script should be

updated appropriately.



path-to-unzipped-sdk-package"/sdk/Library/Frameworks/
PCoIPSoftClientSDK.framework/Examples/support-bundler/pcoip-client-support-
bundler

PCoIP Support Bundler Tool

© 2020 Teradici 78



Manually Bridging USB Devices

If you need to support more than 20 USB devices, or if you expect your users to control which

devices can be bridged, they can be manually added by opening the client’s USB Devices menu and

enabling them.

Manually Bridging USB Devices

© 2020 Teradici 79



Frequently Asked Questions

The following are answers to commonly asked questions when contemplating how to develop

custom PCoIP Clients using the Teradici PCoIP Client SDK.

Q: Can I brand the pre-session client with my company logo and colors?

A: Yes. Your Teradici Cloud Access Platform agreement will contain detailed information about

corporate logos. Follow the Teradici branding guide for including the PCoIP trademark in your final

design.

Q: Are there guidelines for using the Teradici and PCoIP Brand?

A: Yes. Refer to http://www.teradici.com/docs/brand-guide for details.

Q: Does the SDK support localization?

A: Yes. In pre-session you have complete flexibility to create clients that incorporate

customizations. In-session, you can use the  parameter to pass a locale to 

.

Q: Does my client need Teradici licenses to operate?

A: The client itself does not need a license to operate, but the PCoIP agents that it connects to do

require licenses. License handling is performed by the PCoIP Broker or PCoIP agent, depending on

the connection type. It is not handled by the client.

Q: How can I add additional functionality to my PCoIP Client?

A: If you have requirements that go beyond the default capabilities of the Client SDK, you can

integrate the PCoIP Virtual Channel SDK. The Virtual Channel SDK gives you the ability to create

custom PCoIP Virtual Channel plugins which stream data between clients and hosts.

Q: Will my client work with all PCoIP agents?

A: Yes. The PCoIP protocol works with Cloud Access and Cloud Access Plus.

Q: What support options are available for the Client SDK?

locale

ClientSession

Frequently Asked Questions

© 2020 Teradici 80

http://www.teradici.com/docs/brand-guide


A: Teradici offers Developer Support and Professional Services options for SDKs and APIs. Please

contact your Teradici account manager for details.

Frequently Asked Questions

© 2020 Teradici 81


	Teradici Software Development Kit for Mac
	Supported Platforms
	What Can You Build With the PCoIP Client SDK?

	Who Should Read This Guide?
	Session API and Core API Development

	What's New in This Release?
	Enhanced A/V Sync Enabled by Default
	Security and Stability Updates

	System Requirements
	Notarizing Applications to run on macOS Catalina
	Hardware System Requirements

	Wacom Tablet Support
	Remote USB Device Support
	Bridged Wacom Tablets
	Known Issues with Wacom Tablets and Functionality
	USB Device Pressure Sensitivity


	About PCoIP Sessions
	System Actors

	PCoIP Session Phases
	About Brokered and Non-Brokered Connections
	Connecting to a USB Device
	To connect to a USB device:
	To disconnect a USB device:

	Disconnecting a Session
	Session Reconnection

	Changing the PCoIP Software Client Window Mode
	Activating Full Screen Modes
	Miminizing the PCoIP Software Client from a Full-screen Mode
	Activating Windowed Mode

	Enhanced Audio and Video Synchronization
	Sending a Ctrl-Alt-Del Command
	Changing the Language
	PCoIP Ultra
	PCoIP Ultra Enhancements
	Requirements
	Enabling PCoIP Ultra
	Auto-Offload with PCoIP Ultra
	PCoIP Codec Indicator


	Session Client Binary
	Customizable Session Features
	Disable Session Menu Bar Visibility
	Disable Hot Keys
	Windowed or Fullscreen Mode
	Set Host Resolution
	Custom Client Branding
	Image Scaling
	Maintain Aspect Ratio
	USB Auto-Forward
	USB Vendor ID/Product ID Auto-Forward
	Disable USB
	Locale
	Session Log-ID
	Log Level
	Log Folder
	Log Prefix
	Force Native Resolution

	Branding Your Session Client
	Supporting USB Devices
	Remote USB Device Support

	System Precedence
	Mapping Function Keys
	Broker Client API Change Log
	The Broker Client API Example
	The Broker Client API Example Sequence

	Using the Broker Client Example
	Initiate Broker Connection Flow
	Launching the Session Client from Broker Client Example

	broker_client_example -i login_info.txt -l
<<<<<<< HEAD
	Session Client API Features
	Session Client API Change Log
	How to Establish a PCoIP Session
	PCoIP Session-Creation Steps and Actors
	Session Client Integration
	Session Client Binary Integration
	Session Client API Integration

	Minimal Client Example
	Passing Customization Parameters to the Session Client
	Using the Client Session API
	Creating a Branding Text Layout File
	Creating a Branding Package
	Using the Branding Package
	Limits on Customization
	macOS Limitations

	Core API Change Log
	20.10
	20.07
	20.04
	20.01
	19.11
	19.08

	PCoIP Core Library Integration
	PCoIP Core API
	PCoIP Core API and Application Functionality
	Broker Interactions
	Session Establishment
	Display Topology
	Keyboard Events
	Mouse Events
	Touch Events
	Cursor Handling
	USB Redirection
	Session Reconnection
	Session Termination


	Setting Up the Development Environment
	Updating SDK Components
	macOS Build Prerequisites
	Linking the SDK for macOS
	Setting Up a PCoIP Agent Test Environment
	Connecting To Your PCoIP Agent
	Establishing a PCoIP Connection Using a Teradici PCoIP Software Client

	PCoIP Support Bundler Tool
	Manually Bridging USB Devices
	Frequently Asked Questions

